Abstract
Pressure sensors have important prospects in wind pressure monitoring of transmission line towers. Optical pressure sensors are more suitable for transmission line towers due to its anti-electromagnetic interference. However, the fiber pressure sensor is not a suitable choice due to expensive and bulky. In this paper, a compact optical Fabry–Pérot (FP) pressure sensor for wind pressure measurement was developed by MEMS technology. The pressure sensor consists of a MEMS sensing chip, a vertical-cavity surface-emitting laser (Vcsel), and a photodiode (PD). The sensing chip is combined with an FP cavity and a pressure sensing diaphragm which adopts the square film and is fabricated by Silicon on Insulator (SOI) wafer. To calibrate the pressure sensor, the experimental platform which consists of a digital pressure gauge, a pressure loading machine, a digital multimeter, and a laser driver was set up. The experimental results show that the sensitivity of the diaphragm is 117.5 nm/kPa. The measurement range and sensitivity of the pressure sensor are 0–700 Pa and 115 nA/kPa, respectively. The nonlinearity, repeatability, and hysteresis of the pressure sensor are 1.48%FS, 2.23%FS, and 1.59%FS, respectively, which lead to the pressure accuracy of 3.12%FS.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献