Band-Selection of a Portal LED-Induced Autofluorescence Multispectral Imager to Improve Oral Cancer Detection

Author:

Yan Yung-JheORCID,Cheng Nai-Lun,Jan Chia-Ing,Tsai Ming-Hsui,Chiou Jin-ChernORCID,Ou-Yang MangORCID

Abstract

This aim of this study was to find effective spectral bands for the early detection of oral cancer. The spectral images in different bands were acquired using a self-made portable light-emitting diode (LED)-induced autofluorescence multispectral imager equipped with 365 and 405 nm excitation LEDs, emission filters with center wavelengths of 470, 505, 525, 532, 550, 595, 632, 635, and 695 nm, and a color image sensor. The spectral images of 218 healthy points in 62 healthy participants and 218 tumor points in 62 patients were collected in the ex vivo trials at China Medical University Hospital. These ex vivo trials were similar to in vivo because the spectral images of anatomical specimens were immediately acquired after the on-site tumor resection. The spectral images associated with red, blue, and green filters correlated with and without nine emission filters were quantized by four computing method, including summated intensity, the highest number of the intensity level, entropy, and fractional dimension. The combination of four computing methods, two excitation light sources with two intensities, and 30 spectral bands in three experiments formed 264 classifiers. The quantized data in each classifier was divided into two groups: one was the training group optimizing the threshold of the quantized data, and the other was validating group tested under this optimized threshold. The sensitivity, specificity, and accuracy of each classifier were derived from these tests. To identify the influential spectral bands based on the area under the region and the testing results, a single-layer network learning process was used. This was compared to conventional rules-based approaches to show its superior and faster performance. Consequently, four emission filters with the center wavelengths of 470, 505, 532, and 550 nm were selected by an AI-based method and verified using a rule-based approach. The sensitivities of six classifiers using these emission filters were more significant than 90%. The average sensitivity of these was about 96.15%, the average specificity was approximately 69.55%, and the average accuracy was about 82.85%.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

1. Oral Cancerhttp://www.who.int/cancer/prevention/diagnosis-screening/oral-cancer/en/

2. Oral Cancer Diagnosis and Therapy;Tadaaki,2015

3. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3