Development of a High-Resolution Acoustic Sensor Based on ZnO Film Deposited by the RF Magnetron Sputtering Method

Author:

Kang Dong-Chan,Kim Jeong-Nyeon,Park Ik-Keun

Abstract

In the study, an acoustic sensor for a high-resolution acoustic microscope was fabricated using zinc oxide (ZnO) piezoelectric ceramics. The c-cut sapphire was processed into a lens shape to deposit a ZnO film using radio frequency (RF) magnetron sputtering, and an upper and a lower electrode were deposited using E-beam evaporation. The electrode was a Au thin film, and a Ti thin film was used as an adhesion layer. The surface microstructure of the ZnO film was observed using a scanning electron microscope (SEM), the thickness of the film was measured using a focused ion beam (FIB) for piezoelectric ceramics deposited on the sapphire wafer, and the thickness of ZnO was measured to be 4.87 μm. As a result of analyzing the crystal growth plane using X-ray diffraction (XRD) analysis, it was confirmed that the piezoelectric characteristics were grown to the (0002) plane. The sensor fabricated in this study had a center frequency of 352 MHz. The bandwidth indicates the range of upper (375 MHz) and lower (328 MHz) frequencies at the −6 dB level of the center frequency. As a result of image analysis using the resolution chart, the resolution was about 1 μm.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3