Spatially Ordered Arrays of Colloidal Inorganic Metal Halide Perovskite Nanocrystals via Controlled Droplet Evaporation in a Confined Geometry

Author:

Lee Kwan,Moon Jonghyun,Jeong Jeonghwa,Hong Suck WonORCID

Abstract

Inorganic metal halide perovskite nanocrystals, such as quantum dots (QDs), have emerged as intriguing building blocks for miniaturized light-emitting and optoelectronic devices. Although conventional lithographic approaches and printing techniques allow for discrete patterning at the micro/nanoscale, it is still important to utilize intrinsic QDs with the concomitant retaining of physical and chemical stability during the fabrication process. Here, we report a simple strategy for the evaporative self-assembly to produce highly ordered structures of CsPbBr3 and CsPbI3 QDs on a substrate in a precisely controllable manner by using a capillary-bridged restrict geometry. Quantum confined CsPbBr3 and CsPbI3 nanocrystals, synthesized via a modified hot-injection method with excess halide ions condition, were readily adapted to prepare colloidal QD solutions. Subsequently, the spatially patterned arrays of the perovskite QD rings were crafted in a confirmed geometry with high fidelity by spontaneous solvent evaporation. These self-organized concentric rings were systemically characterized regarding the center-to-center distance, width, and height of the patterns. Our results not only facilitate a fundamental understanding of assembly in the perovskite QDs to enable the solution-printing process but also provide a simple route for offering promising practical applications in optoelectronics.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3