Trust-Aware and Fuzzy Logic-Based Reliable Layering Routing Protocol for Underwater Acoustic Networks

Author:

Han Duoliang1ORCID,Du Xiujuan123,Wang Lijuan1,Liu Xiuxiu123,Tian Xiaojing1

Affiliation:

1. Department of Computer, Qinghai Normal University, Xining 810008, China

2. Key Laboratory of the Internet of Things of Qinghai Province, Xining 810008, China

3. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, China

Abstract

Routing protocols based on trust mechanisms have been widely investigated for wireless sensor networks, and the works have achieved good results, while there are few works on trusted routing for underwater acoustic networks (UANs). However, trust-aware routing is the key to improving the packet delivery rate and the energy efficiency of UANs. Therefore, inspired by the theory of trust evaluation, a trust-aware and fuzzy logic-based reliable layering routing protocol (TAFLRLR) is proposed. In the TAFLRLR protocol, to avoid the problem of the void area and improve the transmission reliability, the candidate nodes of the next-hop forwarding nodes are determined according to the layers of neighbor nodes. Moreover, a fuzzy logic-based trust evaluation mechanism (FLTEM) is provided, which employs the fuzzy comprehensive evaluation decision model to calculate the comprehensive trust value for underwater sensor nodes. Further, the node density of a candidate node and its comprehensive trust value are taken as the input of a fuzzy control system and the forwarding probability (FP) of the node is taken as the output, and the candidate node with the highest FP is selected as the best forwarding node. Simulation results illustrate the superiority and effectiveness of the TAFLRLR protocol in terms of energy efficiency, routing reliability, and transmission reliability.

Funder

National Natural Science Foundation of China

Key Laboratory of IoT of Qinghai

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3