Enhancing QoS of Telecom Networks through Server Load Management in Software-Defined Networking (SDN)

Author:

Mehmood Khawaja Tahir1,Atiq Shahid1,Hussain Muhammad Majid2ORCID

Affiliation:

1. Department of Electrical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan

2. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

In the modern era, with the emergence of the Internet of Things (IoT), big data applications, cloud computing, and the ever-increasing demand for high-speed internet with the aid of upgraded telecom network resources, users now require virtualization of the network for smart handling of modern-day challenges to obtain better services (in terms of security, reliability, scalability, etc.). These requirements can be fulfilled by using software-defined networking (SDN). This research article emphasizes one of the major aspects of the practical implementation of SDN to enhance the QoS of a virtual network through the load management of network servers. In an SDN-based network, several servers are available to fulfill users’ hypertext transfer protocol (HTTP) requests to ensure dynamic routing under the influence of the SDN controller. However, if the number of requests is directed to a specific server, the controller is bound to follow the user-programmed instructions, and the load on that server is increased, which results in (a) an increase in end-to-end user delay, (b) a decrease in the data transfer rate, and (c) a decrease in the available bandwidth of the targeted server. All of the above-mentioned factors will result in the degradation of network QoS. With the implementation of the proposed algorithm, dynamic active sensing server load management (DASLM), on the SDN controller, the load on the server is shared based on QoS control parameters (throughput, response time, round trip time, etc.). The overall delay is reduced, and the bandwidth utilization along with throughput is also increased.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3