Robust Point Cloud Registration for Aircraft Engine Pipeline Systems

Author:

Liu Yusong12,Wang Zhihai3,Huang Jichuan24,Zhang Liyan1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610091, China

3. Norla Institute of Technical Physics, Chengdu 610041, China

4. Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Aircraft engine systems are composed of numerous pipelines. It is crucial to regularly inspect these pipelines to detect any damages or failures that could potentially lead to serious accidents. The inspection process typically involves capturing complete 3D point clouds of the pipelines using 3D scanning techniques from multiple viewpoints. To obtain a complete and accurate representation of the aircraft pipeline system, it is necessary to register and align the individual point clouds acquired from different views. However, the structures of aircraft pipelines often appear similar from different viewpoints, and the scanning process is prone to occlusions, resulting in incomplete point cloud data. The occlusions pose a challenge for existing registration methods, as they can lead to missing or wrong correspondences. To this end, we present a novel registration framework specifically designed for aircraft pipeline scenes. The proposed framework consists of two main steps. First, we extract the point feature structure of the pipeline axis by leveraging the cylindrical characteristics observed between adjacent blocks. Then, we design a new 3D descriptor called PL-PPFs (Point Line–Point Pair Features), which combines information from both the pipeline features and the engine assembly line features within the aircraft pipeline point cloud. By incorporating these relevant features, our descriptor enables accurate identification of the structure of the engine’s piping system. Experimental results demonstrate the effectiveness of our approach on aircraft engine pipeline point cloud data.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3