Application of Logistic Regression and Artificial Intelligence in the Risk Prediction of Acute Aortic Dissection Rupture

Author:

Lin Yanya,Hu Jianxiong,Xu Rongbin,Wu Shaocong,Ma Fei,Liu Hui,Xie Ying,Li Xin

Abstract

Logistic regression (LR) and artificial intelligence algorithms were used to analyze the risk factors for the early rupture of acute type A aortic dissection (ATAAD). Data from electronic medical records of 200 patients diagnosed with ATAAD from the Department of Emergency of Guangdong Provincial People’s Hospital from April 2012 to March 2017 were collected. Logistic regression and artificial intelligence algorithms were used to establish prediction models, and the prediction effects of four models were analyzed. According to the LR models, we elucidated independent risk factors for ATAAD rupture, which included age > 63 years (odds ratio (OR) = 1.69), female sex (OR = 1.77), ventilator assisted ventilation (OR = 3.05), AST > 80 U/L (OR = 1.59), no distortion of the inner membrane (OR = 1.57), the diameter of the aortic sinus > 41 mm (OR = 0.92), maximum aortic diameter > 48 mm (OR = 1.32), the ratio of false lumen area to true lumen area > 2.12 (OR = 1.94), lactates > 1.9 mmol/L (OR = 2.28), and white blood cell > 14.2 × 109 /L (OR = 1.23). The highest sensitivity and accuracy were found with the convolutional neural network (CNN) model. Its sensitivity was 0.93, specificity was 0.90, and accuracy was 0.90. In this present study, we found that age, sex, select biomarkers, and select morphological parameters of the aorta are independent predictors for the rupture of ATAAD. In terms of predicting the risk of ATAAD, the performance of random forests and CNN is significantly better than LR, but the performance of the support vector machine (SVM) is worse than LR.

Funder

National Natural Science Grant of China

Science and Technology Program of Guangzhou, China

Natural Science Foundation of Fujian Province

Fujian provincial health technology project

Putian technology planning project

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3