METTL3-Mediated lncSNHG7 m6A Modification in the Osteogenic/Odontogenic Differentiation of Human Dental Stem Cells

Author:

Yang YeqingORCID,Zeng JunkaiORCID,Jiang ChongORCID,Chen JiawenORCID,Song Ci,Chen Ming,Wu BulingORCID

Abstract

Background: Human dental pulp stem cells (hDPSCs) play an important role in endodontic regeneration. N6-methyladenosine (m6A) is the most common RNA modification, and noncoding RNAs have also been demonstrated to have regulatory roles in the expression of m6A regulatory proteins. However, the study on m6A modification in hDPSCs has not yet been conducted. Methods: Single base site PCR (MazF) was used to detect the m6A modification site of lncSNHG7 before and after mineralization of hDPSCs to screen the target m6A modification protein, and bioinformatics analysis was used to analyze the related pathways rich in lncSNHG7. After knockdown and overexpression of lncSNHG7 and METTL3, the osteogenic/odontogenic ability was detected. After METTL3 knockdown, the m6A modification level and its expression of lncSNHG7 were detected by MazF, and their binding was confirmed. Finally, the effects of lncSNHG7 and METTL3 on the Wnt/β-catenin pathway were detected. Results: MazF experiments revealed that lncSNHG7 had a m6A modification before and after mineralization of hDPSCs, and the occurrence site was 2081. METTL3 was most significantly upregulated after mineralization of hDPSCs. Knockdown/ overexpression of lncSNHG7 and METTL3 inhibited/promoted the osteogenic/odontogenic differentiation of hDPSCs. The m6A modification and expression of lncSNHG7 were both regulated by METTL3. Subsequently, lncSNHG7 and METTL3 were found to regulate the Wnt/β-catenin signaling pathway. Conclusion: These results revealed that METTL3 can activate the Wnt/β-catenin signaling pathway by regulating the m6A modification and expression of lncSNHG7 in hDPSCs to enhance the osteogenic/odontogenic differentiation of hDPSCs. Our study provides new insight into stem cell-based tissue engineering.

Funder

General Program of National Natural Scientific Foundation of China

Medical Scientific Research Foundation of Guangdong Province of China

Science Research Cultivation Program of Stomatological Hospital, Southern Medical University

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3