Linked Data Platform for Solanaceae Species

Author:

Singh Gurnoor,Kuzniar Arnold,Brouwer Matthijs,Martinez-Ortiz Carlos,Bachem Christian W. B.ORCID,Tikunov Yury M.,Bovy Arnaud G.,Finkers Richard G. F. Visser and RichardORCID

Abstract

Genetics research is increasingly focusing on mining fully sequenced genomes and their annotations to identify the causal genes associated with traits (phenotypes) of interest. However, a complex trait is typically associated with multiple quantitative trait loci (QTLs), each comprising many genes, that can positively or negatively affect the trait of interest. To help breeders in ranking candidate genes, we developed an analytical platform called pbg-ld that provides semantically integrated geno- and phenotypic data on Solanaceae species. This platform combines both unstructured data from scientific literature and structured data from publicly available biological databases using the Linked Data approach. In particular, QTLs were extracted from tables of full-text articles from the Europe PubMed Central (PMC) repository using QTLTableMiner++ (QTM), while the genomic annotations were obtained from the Sol Genomics Network (SGN), UniProt and Ensembl Plants databases. These datasets were transformed into Linked Data graphs, which include cross-references to many other relevant databases such as Gramene, Plant Reactome, InterPro and KEGG Orthology (KO). Users can query and analyze the integrated data through a web interface or programmatically via the SPARQL and RESTful services (APIs). We illustrate the usability of pbg-ld by querying genome annotations, by comparing genome graphs, and by two biological use cases in Jupyter Notebooks. In the first use case, we performed a comparative genomics study using pbg-ld to compare the difference in the genetic mechanism underlying tomato fruit shape and potato tuber shape. In the second use case, we developed a seamlessly integrated workflow that uses genomic data from pbg-ld knowledge graphs and prioritization pipelines to predict candidate genes within QTL regions for metabolic traits of tomato.

Funder

Netherlands eScience Center

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3