Review on Short-circuit Current Analysis and Suppression Techniques for MMC-HVDC Transmission Systems

Author:

Qin BoyuORCID,Liu WansongORCID,Zhang Ruowei,Liu Jialing,Li HengyiORCID

Abstract

The modular multilevel converter (MMC) has been widely adopted in high voltage direct current (HVDC) transmission systems due to its significant advantages. MMC-HVDC is developing towards multi-terminal direct current (MTDC) power grid for reliability enhancement. However, there exist a huge amplitude and a steep rise in fault current due to the low impedances of DC lines and MMCs, which threaten the security and reliability of the DC power grids. It is necessary to restrain the DC short circuit current in order to ensure the safe and stable operation of DC power grids. This paper gives a comprehensive review and evaluation of the proposed DC short-circuit current analysis and suppression techniques used in MMC-based MTDC power girds, in terms of MMC modeling, short circuit calculation, and suppression method. In addition, future trends of countermeasures to short circuit current in MMC-based MTDC power grids are also discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MW-Scale High-Voltage Direct-Current Power Conversion for Large-Spacecraft Electric Propulsion;Electronics;2024-04-11

2. Control and protection of MMC-based HVDC systems: A review;Energy Reports;2023-12

3. DC Fault Current Calculation and Fault Level Analysis in MMC-MVDC System;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

4. Operation Characteristics of Superconducting DC Circuit Breaker for Reliability Assessment in a Transient State of MMC VSC-HVDC;Journal of Electrical Engineering & Technology;2023-03-20

5. Controllable DC Fault Current Limiter with Loss Reduction;2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC);2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3