Optimizing Cropping Systems of Cultivated Pastures in the Mountain–Basin Systems in Northwest China

Author:

Fan YaoORCID,Li Bo,Dai Xuhuan,Ma Lingxiao,Tai Xiaoli,Bi Xu,Yang ZihanORCID,Zhang Xinshi

Abstract

Cultivated pastures are effective supporting systems of natural grassland preservation and sustainable agriculture in arid regions of northwest China. The adaptive combination of forage species enhances the yields and ecological functions of cultivated pastures. Legume–grass intercropping is a valuable sowing regime because of the niche differentiation and resource acquisition. Understanding the effects of species interactions in legume–grass intercropping systems can provide scientific and practical guidance on cultivated pasture management. In this study, we conducted a field experiment to determine the advantages and effects of alfalfa (Medicago sativa L.) annual grass intercropping on cultivated pastures. We analyzed the data on population traits, community characteristics and dry matter in the growing period to evaluate the effects of variety and sowing patterns with the following treatments: three alfalfa varieties (Algonquin, Leafy king, WL354HQ) sown in monocultures and mixed with oat (Avena sativa L.) or sudangrass (Sorghum sudanense (Piper) Stapf.) with two seeding ratios. Our results suggest that in mixtures, the plant traits of alfalfa were determined by their own characters at the earlier stage but were affected more by companion grass at the later stage. The annual forage grass companion impaired the growth of alfalfa during the growth period. In mixtures, sudangrass displayed a stronger inhibiting effect on alfalfa than oat. Alfalfa–grass intercropping was proved to be a feasible cropping practice in terms of yield, production stability and weed control, due to their complementary use of resources in comparison with alfalfa monocropping. Alfalfa–annual grass intercropping is a beneficial alternative strategy to obtain effective cultivated pastures in arid regions.

Funder

National Science and Technology Planning Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3