Active Sidewall Panels with Virtual Microphones for Aircraft Interior Noise Reduction

Author:

Misol MalteORCID

Abstract

This work deals with the reduction of aircraft interior noise using active sidewall panels (linings). Research work done in the past showed that considerable reductions of the sound pressure level (SPL) in the cabin are possible using structural actuators mounted on the lining and error microphones distributed in front of the linings. However, microphones are undesirable for error sensing because they are not suitable for the realisation of an integrated and autonomous active lining (smart lining module). Therefore, the goal of the present work is the replacement of the microphones by structural sensors. Using the structural sensors as remote sensors in combination with an acoustic filter, virtual microphones can be defined. The present study relies on experimental data of a double-walled fuselage system which is mounted in a sound transmission loss facility. Simulation results based on measured time data and identified frequency response functions are provided. Different configurations of virtual microphones are investigated regarding the SPL reduction and the induced vibration of the lining panel.

Funder

European Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3