A Novel Self-Moving Framed Piezoelectric Actuator

Author:

Wang Liang,Hao Bo,Wang RuifengORCID,Jin Jiamei,Xu Qingsong

Abstract

Utilizing the inherent advantages of the piezoelectric driving technology, such as good adaptability to vacuum environment and no electromagnetic interference, a novel self-moving framed piezoelectric actuator is proposed, simulated, and tested in this study, holding a potential application for magnetic confinement fusion. Four piezoelectric composite beams form a framed piezoelectric actuator. Two orthogonal vibration modes are excited and coupled in the framed piezoelectric actuator, producing a microscopic elliptical motion at its driving feet. Due to the friction, the framed piezoelectric actuator can move on a rail, thereby constructing the railed carrying system. Numerical simulation is carried out to confirm the operation principle and to conduct the dimensional optimization of the proposed framed piezoelectric actuator. A prototype of the proposed framed piezoelectric actuator with a weight of 83.8 g is manufactured, assembled, and tested, to verify the piezoelectric actuation concept. The optimal driving frequency of 20.75 kHz is obtained for the proposed actuator prototype, and at the excitation voltage of 400 Vpp its maximum mean velocity of 384.9 mm/s is measured. Additionally, the maximum load weight to self-weight of the proposed actuator prototype reached up to 10.74 at the excitation voltage of 300 Vpp. These experimental results validate the feasibility of the piezoelectric actuation concept on the railed carrying system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3