Application of k0-INAA Method in Preliminary Characterization of KRISS Urban Airborne Particulate Matter Certified Reference Material

Author:

Cho HanaORCID,Dasari Kishore B.ORCID,Lim Myung Chul,Sun Gwang Min,Jaćimović Radojko,Yim Yong-HyeonORCID

Abstract

We report comprehensive elemental composition studies on the average urban airborne particulate matters (PMs) collected in the Greater Seoul area, Korea, in 2019 to identify regional and chronological characteristics of the sample as a candidate for certified reference material (CRM), using k0-based single comparator instrumental neutron activation analysis (k0-INAA). The method was successfully validated by comparing the analysis result of a similar matrix CRM (SRM 1648a urban particulate matter) of National Institute of Standards and Technology, USA, with corresponding certified values. The same methodology was applied to determine various elements in candidate environmental materials for future CRM development, including the urban PMs and incineration ashes, to investigate the possibility of using k0-INAA for certification of relevant reference materials. In total, 46 elements in the urban PM sample were analyzed and their concentration levels were compared with the urban PMs collected in the 1970s in St. Louis, USA. Urban PMs of Korea Research Institute of Standards and Science in 2019 contain significantly lower levels of hazardous elements, such as As, Cd, Cr, Hg, and Pb, as compared to those of the 1970s, which can be attributed to the reduced air pollution by environmental regulation and technological innovation. The potential major source of urban airborne PMs was also discussed.

Funder

Metrology Institute of the Republic of Slovenia

Korea Atomic Energy Research Institute

Korea Research Institute of Standards and Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3