Author:
Liu Yazui,Zhao Gang,Han Pengfei
Abstract
The freeform surface is treated as a single machining region for most traditional toolpath generation algorithms. However, due to the complexity of a freeform surface, it is impossible to produce a high-quality surface using one unique machining process. Hence, region-based methods are widely investigated for freeform surface machining to achieve an optimized toolpath. The Non-Uniform Rational B-spline Surface (NURBS) represented freeform surface is not suitable for region-based toolpath generation because of the surface gaps caused by NURBS trimming and merging operations. To solve the limitation of the NURBS, T-spline is proposed with the advantages of being gap-free, having less control points, and local refinement, which is an ideal tool for region-based toolpath generation. Thus, T-spline is introduced to represent a freeform surface for its toolpath generation in the paper. A region-based toolpath generation method for the T-spline surface is proposed based on watershed technology. Firstly, watershed-based feature recognition is presented to divide the T-spline surface into a set of sub-regions. Secondly, the concept of a PolyBoundingBox that consists of a set of minimum bounding boxes is proposed to describe the sub-regions, and Manufacturing-Suitable Regions are constructed with the help of T-spline local refinement and the PolyBoundingBox. In the end, an optimized multi-rectangles toolpath generation algorithm is applied for sub-regions. The proposed method is tested using three synthetic T-spline surfaces, and the comparison results show the advantage in toolpath length and toolpath reversing number.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science