Building Energy an Simulation Model for Analyzing Energy Saving Options of Multi-Span Greenhouses

Author:

Rasheed Adnan,Kwak Cheul Soon,Kim Hyeon TaeORCID,Lee Hyun Woo

Abstract

This study proposes a multi-span greenhouse Building Energy Simulation (BES) model using a Transient System Simulation (TRNSYS)-18 program. A detailed BES model was developed and validated to simulate the thermal environment in the greenhouse under different design parameters for the multi-span greenhouse. Validation of the model was carried out by comparing the results from computed and experimental greenhouse internal temperatures. The statistical analyses produced an R2 value of 0.84, a root mean square error (RMSE) value of 1.8 °C, and a relative (r)RMSE value of 6.7%, showing good agreement between computed and experimental results. The validated proposed BES model was used to evaluate the effect of multi-span greenhouse design parameters including thermal screens, number of screens, orientation, covering materials, double glazing, north-wall insulation, roof geometry, and natural ventilation, on the annual energy demand of the greenhouse, subjected to Taean Gun (latitude 36.88° N, longitude 126.24° E), Chungcheongnam-do, South Korea winter and summer season weather conditions. Additionally, the proposed BES model is capable of evaluating multi-span greenhouse design parameters with daily and seasonal dynamic control of thermal and shading screens, natural ventilation, as well as heating and cooling set-points. The TRNSYS 18 program proved to be highly flexible for carrying out simulations under local weather conditions and user-defined design and control of the greenhouse. The statistical analysis of validated results should encourage the adoption of the proposed model when the underlying aim is to evaluate the design parameters of multi-span greenhouses considering local weather conditions and specific needs.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3