Smart Grid for Industry Using Multi-Agent Reinforcement Learning

Author:

Roesch Martin,Linder Christian,Zimmermann Roland,Rudolf Andreas,Hohmann AndreaORCID,Reinhart Gunther

Abstract

The growing share of renewable power generation leads to increasingly fluctuating and generally rising electricity prices. This is a challenge for industrial companies. However, electricity expenses can be reduced by adapting the energy demand of production processes to the volatile prices on the markets. This approach depicts the new paradigm of energy flexibility to reduce electricity costs. At the same time, using electricity self-generation further offers possibilities for decreasing energy costs. In addition, energy flexibility can be gradually increased by on-site power storage, e.g., stationary batteries. As a consequence, both the electricity demand of the manufacturing system and the supply side, including battery storage, self-generation, and the energy market, need to be controlled in a holistic manner, thus resulting in a smart grid solution for industrial sites. This coordination represents a complex optimization problem, which additionally is highly stochastic due to unforeseen events like machine breakdowns, changing prices, or changing energy availability. This paper presents an approach to controlling a complex system of production resources, battery storage, electricity self-supply, and short-term market trading using multi-agent reinforcement learning (MARL). The results of a case study demonstrate that the developed system can outperform the rule-based reactive control strategy (RCS) frequently used. Although the metaheuristic benchmark based on simulated annealing performs better, MARL enables faster reactions because of the significantly lower computation costs for its own execution.

Funder

Bayerische Forschungsstiftung

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Potenzial-und Kosten-Nutzen-Analyse zu den Einsatzmöglichkeiten von Kraft-Wärme-Kopplung (Umsetzung der EU-Energieeffizienzrichtlinie) sowie Evaluierung des KWKG im Jahr 2014;Prognos,2014

2. Strompreisanalyse Mai 2018: Haushalte und Industrie. Bundesverband der Energie-und Wasserwirtschaft e.V,2018

3. Energieflexible Produktionssysteme. Ein-führungen zur Bewertung der Energieeffizienz von Produktionssystemen;Reinhart;Werkstattstechnik Online,2012

4. Electrifiying Insights: How Automakers can Drive Electrified Vehicle Sales and Profitability;Knupfer,2017

5. Die Bedeutung der Energiespeicherbranche für das Energiesystem und die Gesamtwirtschaft in Deutschland;Stolle;Energiewirtsch. Tagesfragen.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3