Arching Detection Method of Slab Track in High-Speed Railway Based on Track Geometry Data

Author:

Ma ZhuoranORCID,Gao LiangORCID,Zhong Yanglong,Ma ShuaiORCID,An BolunORCID

Abstract

During the long-term service of slab track, various external factors (such as complicated temperature) can result in a series of slab damages. Among them, slab arching changes the structural mechanical properties, deteriorates the track geometry conditions, and even threatens the operation of trains. Therefore, it is necessary to detect slab arching accurately to achieve effective maintenance. However, the current damage detection methods cannot satisfy high accuracy and low cost simultaneously, making it difficult to achieve large-scale and efficient arching detection. To this end, this paper proposed a vision-based arching detection method using track geometry data. The main works include: (1) data nonlinear deviation correction and arching characteristics analysis; (2) data conversion and augmentation; (3) design and experiments of convolutional neural network- based detection model. The results show that the proposed method can detect arching damages effectively, and the F1-score reaches 98.4%. By balancing the sample size of each pattern, the performance can be further improved. Moreover, the method outperforms the plain deep learning network. In practice, the proposed method can be employed to detect slab arching and help to make maintenance plans. The method can also be applied to the data-based detection of other structural damages and has broad prospects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3