Audio-Visual Tensor Fusion Network for Piano Player Posture Classification

Author:

Park So-Hyun,Park Young-Ho

Abstract

Playing the piano in the correct position is important because the correct position helps to produce good sound and prevents injuries. Many studies have been conducted in the field of piano playing posture recognition that combines various techniques. Most of these techniques are based on analyzing visual information. However, in the piano education field, it is essential to utilize audio information in addition to visual information due to the deep relationship between posture and sound. In this paper, we propose an audio-visual tensor fusion network (simply, AV-TFN) for piano performance posture classification. Unlike existing studies that used only visual information, the proposed method uses audio information to improve the accuracy in classifying the postures of professional and amateur pianists. For this, we first introduce a dataset called C3Pap (Classic piano performance postures of amateur and professionals) that contains actual piano performance videos in diverse environments. Furthermore, we propose a data structure that represents audio-visual information. The proposed data structure represents audio information on the color scale and visual information on the black and white scale for representing relativeness between them. We call this data structure an audio-visual tensor. Finally, we compare the performance of the proposed method with state-of-the-art approaches: VN (Visual Network), AN (Audio Network), AVN (Audio-Visual Network) with concatenation and attention techniques. The experiment results demonstrate that AV-TFN outperforms existing studies and, thus, can be effectively used in the classification of piano playing postures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3