Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation

Author:

Ramadan MuawiaORCID,Shuqqo Hana,Qtaishat LayaleeORCID,Asmar Hebaa,Salah BashirORCID

Abstract

Big data analytics (BDA) is one of the main pillars of Industry 4.0. It has become a promising tool for supporting the competitive advantages of firms by enhancing data-driven performance. Meanwhile, the scarcity of resources on a worldwide level has forced firms to consider sustainable-based performance as a critical issue. Additionally, the literature confirms that BDA and innovation can enhance firms’ performance, leading to competitive advantage. However, there is a lack of studies that examine whether or not BDA and innovation alone can sustain a firm’s competitive advantage. Drawing on previous studies and dynamic capability theory, this study proposes that big data analytics capabilities (BDAC), supported by a high level of data availability (DA), can improve innovation capabilities (IC) and, hence, lead to the development of a sustainable competitive advantage (SCA). This study examines the proposed hypotheses by surveying 117 manufacturing firms and analyzing responses via partial least squares–structural equation modeling (PLS-SEM) statistical software. Findings reveal that BDAC relies significantly on the degree of DA and has a significant role in increasing IC. Furthermore, the analysis confirms that IC has a significant and direct effect on a firm’s SCA, while BDAC has no direct effect on SCA. This study provides valuable insights for manufacturing firms to improve their sustainable business performance and theoretical and practical insights into BDA implementation issues in attaining sustainability in processes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3