Abstract
The push for greater urban sustainability has increased the urgency of the search for noise mitigation solutions that allow for natural ventilation into buildings. Although a viable active noise control (ANC) solution with up to 10 dB of global attenuation between 100 Hz and 1000 Hz was previously developed for an open window, it had limited low-frequency performance below 300 Hz, owing to the small loudspeakers used. To improve the low-frequency attenuation, four passive radiator-based speakers were affixed around the opening of a top-hung ventilation window. The active control performance between 100 Hz and 700 Hz on a single top-hung window in a full-sized mock-up apartment room was examined. Active attenuation came close to the performance of the passive insulation provided by fully closing the window for expressway traffic and motorbike passing noise types. For a jet aircraft flyby, the performance of active attenuation with the window fully opened was similar to that of passive insulation with fully closed windows. In the case of low-frequency compressor noise, active attenuation’s performance was significantly better than the passive insulation. Overall, between 8 dB and 12 dB of active attenuation was achieved directly in front of the window opening, and up to 10.5 dB of attenuation was achieved across the entire room.
Funder
National Research Foundation Singapore
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献