A Real-Time Safety Helmet Wearing Detection Approach Based on CSYOLOv3

Author:

Wang Haikuan,Hu Zhaoyan,Guo YuanjunORCID,Yang Zhile,Zhou FeixiangORCID,Xu Peng

Abstract

In the practical scenario of construction sites with extremely complicated working environment and numerous personnel, it is challenging to detect safety helmet wearing (SHW) in real time on the premise of ensuring high precision performance. In this paper, a novel SHW detection model on the basis of improved YOLOv3 (named CSYOLOv3) is presented to heighten the capability of target detection on the construction site. Firstly, the backbone network of darknet53 is improved by applying the cross stage partial network (CSPNet), which reduces the calculation cost and improves the training speed. Secondly, the spatial pyramid pooling (SPP) structure is employed in the YOLOv3 model, and the multi-scale prediction network is improved by combining the top-down and bottom-up feature fusion strategies to realize the feature enhancement. Finally, the safety helmet wearing detection dataset containing 10,000 images is established using the construction site cameras, and the manual annotation is required for the model training. Experimental data and contrastive curves demonstrate that, compared with YOLOv3, the novel method can largely ameliorate mAP by 28% and speed is improved by 6 fps.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3