The Derivation of Defect Priorities and Core Defects through Impact Relationship Analysis between Embedded Software Defects

Author:

Huh Sang MooORCID,Kim Woo-Je

Abstract

As embedded software is closely related to hardware equipment, any defect in embedded software can lead to major accidents. Thus, all defects must be collected, classified, and tested based on their severity. In the pure software field, a method of deriving core defects already exists, enabling the collection and classification of all possible defects. However, in the embedded software field, studies that have collected and categorized relevant defects into an integrated perspective are scarce, and none of them have identified core defects. Therefore, the present study collected embedded software defects worldwide and identified 12 types of embedded software defect classifications through iterative consensus processes with embedded software experts. The impact relation map of the defects was drawn using the decision-making trial and evaluation laboratory (DEMATEL) method, which analyzes the influence relationship between elements. As a result of analyzing the impact relation map, the following core embedded software defects were derived: hardware interrupt, external interface, timing error, device error, and task management. All defects can be tested using this defect classification. Moreover, knowing the correct test order of all defects can eliminate critical defects and improve the reliability of embedded systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. An investigation of the Therac-25 accidents

2. The Ariane 5 Flight 501 failure—A case study in system engineering for computing systems. [Research Report] RR-3079;Lann;INRIA,1996

3. What Types of Defects Are Really Discovered in Code Reviews?

4. A Method to Establish Severity Weight of Defect Factors for Application Software using ANP

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3