Application of Machine Learning Techniques to Delineate Homogeneous Climate Zones in River Basins of Pakistan for Hydro-Climatic Change Impact Studies

Author:

Nusrat Ammara,Gabriel Hamza FarooqORCID,Haider SajjadORCID,Ahmad ShakilORCID,Shahid MuhammadORCID,Ahmed Jamal Saad

Abstract

Climatic data archives, including grid-based remote-sensing and general circulation model (GCM) data, are used to identify future climate change trends. The performances of climate models vary in regions with spatio-temporal climatic heterogeneities because of uncertainties in model equations, anthropogenic forcing or climate variability. Hence, GCMs should be selected from climatically homogeneous zones. This study presents a framework for selecting GCMs and detecting future climate change trends after regionalizing the Indus river sub-basins in three basic steps: (1) regionalization of large river basins, based on spatial climate homogeneities, for four seasons using different machine learning algorithms and daily gridded precipitation data for 1975–2004; (2) selection of GCMs in each homogeneous climate region based on performance to simulate past climate and its temporal distribution pattern; (3) detecting future precipitation change trends using projected data (2006–2099) from the selected model for two future scenarios. The comprehensive framework, subject to some limitations and assumptions, provides divisional boundaries for the climatic zones in the study area, suitable GCMs for climate change impact projections for adaptation studies and spatially mapped precipitation change trend projections for four seasons. Thus, the importance of machine learning techniques for different types of analyses and managing long-term data is highlighted.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3