AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals

Author:

Yu Jaehak,Park Sejin,Kwon Soon-Hyun,Ho Chee Meng Benjamin,Pyo Cheol-Sig,Lee HansungORCID

Abstract

Stroke is a leading cause of disabilities in adults and the elderly which can result in numerous social or economic difficulties. If left untreated, stroke can lead to death. In most cases, patients with stroke have been observed to have abnormal bio-signals (i.e., ECG). Therefore, if individuals are monitored and have their bio-signals measured and accurately assessed in real-time, they can receive appropriate treatment quickly. However, most diagnosis and prediction systems for stroke are image analysis tools such as CT or MRI, which are expensive and difficult to use for real-time diagnosis. In this paper, we developed a stroke prediction system that detects stroke using real-time bio-signals with artificial intelligence (AI). Both machine learning (Random Forest) and deep learning (Long Short-Term Memory) algorithms were used in our system. EMG (Electromyography) bio-signals were collected in real time from thighs and calves, after which the important features were extracted, and prediction models were developed based on everyday activities. Prediction accuracies of 90.38% for Random Forest and of 98.958% for LSTM were obtained for our proposed system. This system can be considered an alternative, low-cost, real-time diagnosis system that can obtain accurate stroke prediction and can potentially be used for other diseases such as heart disease.

Funder

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3