Multi-Cat Monitoring System Based on Concept Drift Adaptive Machine Learning Architecture

Author:

Cho Yonggi1ORCID,Song Eungyeol1ORCID,Ji Yeongju1,Yang Saetbyeol1,Kim Taehyun2,Park Susang2,Baek Doosan2,Yu Sunjin3ORCID

Affiliation:

1. Research and Development Department, Codevision Inc., Seoul 03722, Republic of Korea

2. Development Department, Valiantx Co., Ltd., Bucheon 14553, Republic of Korea

3. Department of Culture Techno, Changwon National University, Changwon 51140, Republic of Korea

Abstract

In multi-cat households, monitoring individual cats’ various behaviors is essential for diagnosing their health and ensuring their well-being. This study focuses on the defecation and urination activities of cats, and introduces an adaptive cat identification architecture based on deep learning (DL) and machine learning (ML) methods. The architecture comprises an object detector and a classification module, with the primary focus on the design of the classification component. The DL object detection algorithm, YOLOv4, is used for the cat object detector, with the convolutional neural network, EfficientNetV2, serving as the backbone for our feature extractor in identity classification with several ML classifiers. Additionally, to address changes in cat composition and individual cat appearances in multi-cat households, we propose an adaptive concept drift approach involving retraining the classification module. To support our research, we compile a comprehensive cat body dataset comprising 8934 images of 36 cats. After a rigorous evaluation of different combinations of DL models and classifiers, we find that the support vector machine (SVM) classifier yields the best performance, achieving an impressive identification accuracy of 94.53%. This outstanding result underscores the effectiveness of the system in accurately identifying cats.

Funder

Ministry of Science and IC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3