Abstract
The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants’ health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones.
Funder
Deanship of Scientific Research at King Saud University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献