Preparation of Medicated Polylactide Micropieces by Means of Ultrasonic Technology

Author:

Olmo Cristian,Franco LourdesORCID,del Valle Luis J.ORCID,Puiggalí Jordi

Abstract

A technology based on the application of ultrasound as an energy source was applied to get polylactide (PLA) micropieces with minimum degradation and processing time. This requirement could be even shorter than 1.5 s. The ultrasound technology was also demonstrated to be efficient for the incorporation of drugs with a pharmacological activity. Thus, the loading of two representative bactericide agents (i.e., triclosan (TCS), and chlorhexidine (CHX)), having differentiated chemical properties was evaluated. Typical physicochemical characterization included mechanical and thermal properties together with the evaluation of molecular degradation during processing for both unloaded and loaded specimens. Results pointed out that the thermally stable TCS could be loaded into the specimens without any problem, but cautions should be taken into account for CHX. Nevertheless, degradation could in this case be avoided when the drug load was lower than 3 wt-%, a result that contrasts with the significant decomposition attained by using conventional melting processes, which required long processing times at high temperatures. Morphologic analyses of loaded specimens did not reveal significant defects, while spectroscopic analyses showed that a good dispersion of drugs inside pieces could be attained. Drugs were slowly released from micropieces with a rate that was dependent on their hydrophilic character. Thus, release in a phosphate buffered saline (PBS)-ethanol medium (70% of PBS) followed a first order kinetics with constants of 0.0356 h−1 and 0.027 h−1 for CHX and TCS, respectively. A clear bactericide effect against both Gram-positive and Gram-negative bacteria was achieved at the beginning of exposure to the corresponding culture media, while a bacteriostatic effect was interestingly still detected after long exposure times. In fact, bacterial growth could be reduced to near 20% when micropieces were loaded with only 3 wt-% of any of the selected CHX and TCS drugs.

Funder

Generalitat de Catalunya

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3