Enhancing the Accuracy of Linear Finite Element Models of Vehicle Structures Considering Spot-Welded Flanges

Author:

Martins LuisORCID,Romero GregorioORCID,Suarez BertaORCID

Abstract

Structural engineering simulations have required increasingly complex computational models to replace physical tests accurately. This work focuses on the numerical analysis of vehicle body structures, whose size and complexity make the use of very accurate nonlinear models unfeasible due to the prohibitive computational costs involved. The purpose of this study is to find a new approach to model spot-welded joints in linear finite element models of thin-wall vehicle body structures, improving the accuracy of the model without increasing its complexity. Using a set of simplified nonlinear models, we fitted the stiffness and damping properties of these welded joints and used those adjusted values into a linear model of the entire vehicle body structure. The results were compared with experimental tests, showing a clear improvement in the accuracy of the modal and frequency responses provided by the linear finite element model, but keeping its initial complexity level. The adjusted model was then used in an optimization analysis to reduce the structure’s weight, leading to interesting cost savings and important reductions in the use of natural resources and carbon emissions.

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. NVH analysis and improvement of a vehicle body structure using DOE method

2. Automotive Product Development Cycles and the Need for Balance with the Regulatory Environmentwww.cargroup.org/automotive-product-development-cycles-and-the-need-for-balance-with-the-regulatory-environment

3. Validation of Automotive Component FE Models by Means of Test-Analysis Correlation and Model Updating Techniques

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3