Comparative Study on the Thermal Performance of Cr-CrxOy and YSZ-CoNiCrAlY Coatings Exposed at 900 °C

Author:

Kiryc Markus,Kazamer NorbertORCID,Kurumlu DenizORCID,Marginean Gabriela

Abstract

Yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) deposited on CoNiCrAlY oxidation protective bond coats are commonly required in temperature regimes up to 1200 °C (e.g., hot gas turbine regions) due to their superior thermal behavior and mechanical properties. For temperatures up to around 900 °C, oxidation protection can be alternatively provided by metallic-ceramic Cr-CrxOy coatings. For the present research, Cr-CrxOy atmospheric plasma sprayed (APS) and YSZ-CoNiCrAlY APS-high velocity oxy-fuel TBC coatings were deposited on a NiCr20Co18Ti substrate. The samples were isothermally heat treated at 900 °C for 10 h in an environmental atmosphere and subsequently isothermally oxidized at the same temperature for 1200 h. Investigations of the physical, chemical, and mechanical properties were performed on the as-sprayed, heat-treated, and oxidized samples. The oxidation behavior, microhardness, cohesion, and adhesion of the samples were correlated with the microstructural investigations and compared to the conventional TBC system. It could be shown that heat treating decreased the Cr-CrxOy coatings crack susceptibility and led to the formation of a protective thermally grown Cr oxide layer. The experimental work on the YSZ-CoNiCrAlY system revealed that the phase composition of the bond coat has a direct influence on the oxidation protection of the coating system.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3