Abstract
The present study investigates the effect of two parameters of process type and tool offset on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), and Retreating Parallel-Friction Stir Welding (RP-FSW) were used. In addition, four modes of 0.5, 1, 1.5, and 2 mm of tool offset were used in two welding passes in AP-FSW and RP-FSW processes. Based on the results, it was found that the mechanical properties of welded specimens with AP-FSW and RP-FSW techniques experience significant increments compared to FSW specimens. The best mechanical and microstructural properties were observed in the samples welded by RP-FSW, AP-FSW, and FSW methods, respectively. Welded specimens with the RP-FSW technique had better mechanical properties than other specimens due to the concentration of material flow in the weld nugget and proper microstructure refinement. In both AP-FSW and RP-FSW processes, by increasing the tool offset to 1.5 mm, joint efficiency increased significantly. The highest weld strength was found for welded specimens by RP-FSW and AP-FSW processes with a 1.5 mm tool offset. The peak sample of the RP-FSW process (1.5 mm offset) had the closest mechanical properties to the base metal, in which the Yield Stress (YS), ultimate tensile strength (UTS), and elongation percentage (E%) were 76.4%, 86.5%, and 70% of base metal, respectively. In the welding area, RP-FSW specimens had smaller average grain size and higher hardness values than AP-FSW specimens.
Subject
General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献