The Applicability of Die Cast A356 Alloy to Additive Friction Stir Deposition at Various Feeding Speeds

Author:

Alzahrani Bandar,El-Sayed Seleman Mohamed M.ORCID,Ahmed Mohamed M. Z.ORCID,Elfishawy Ebtessam,Ahmed Adham M. Z.,Touileb Kamel,Jouini NabilORCID,Habba Mohamed I. A.ORCID

Abstract

In the current investigation, additive friction stir-deposition (AFS-D) of as-cast hypoeutectic A356 Al alloy was conducted. The effect of feeding speeds of 3, 4, and 5 mm/min at a constant rotational speed of 1200 rpm on the macrostructure, microstructure, and hardness of the additive manufacturing parts (AMPs) was investigated. Various techniques (OM, SEM, and XRD) were used to evaluate grain microstructure, presence phases, and intermetallics for the as-cast material and the AMPs. The results showed that the friction stir deposition technique successfully produced sound additive manufactured parts at all the applied feeding speeds. The friction stir deposition process significantly improved the microstructure of the as-cast alloy by eliminating porosity and refining the dendritic α-Al grains, eutectic Si phase, and the primary Si plates in addition to intermetallic fragmentation. The mean values of the grain size of the produced AMPs at the feeding speeds of 3, 4, and 5 mm/min were 0.62 ± 0.1, 1.54 ± 0.2, and 2.40 ± 0.15 µm, respectively, compared to the grain size value of 30.85 ± 2 for the as-cast alloy. The AMPs exhibited higher hardness values than the as-cast A356 alloy. The as-cast A356 alloy showed highly scattered hardness values between 55 and 75.8 VHN. The AMP fabricated at a 3 mm/min feeding speed exhibited the maximum hardness values between 88 and 98.1 VHN.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3