Prediction of Traffic Vibration Environment of Ancient Wooden Structures Based on the Response Transfer Ratio Function

Author:

Zhang Cheng,Zhang Nan,Zhang Yunshi,Liu Xiao

Abstract

Traffic−induced vibration is increasingly affecting people’s lives, which necessitates scrutiny of the environmental vibrations caused by traffic. This paper proposed a vibration prediction method suitable for the ancient wooden structures subjected to traffic−induced vibrations based on the multi−point response transfer ratio function. The accuracy of the proposed approach was also checked by comparing the predicted results with the measured results in the context of both the time domain and frequency domain. Subsequently, the environmental vibrations due to heavy−duty trucks passing at various speeds were measured, and the measurements were utilized as the input vibration excitation to assess the structural vibration of the Feiyun Pavilion. The structural safety was evaluated according to the “Technical specifications for protecting historic buildings against man−made vibration”. In order to meet the structural safety requirements of the Feiyun Pavilion, it is strongly recommended to limit the type and speed of vehicles in the nearby area.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

1. Ansys Method and vibration characteristics of field vibrations induced by high-speed trains;Cao;J. China Railw. Soc.,2017

2. Prediction of effects of vibration induced by running metro trains on sensitive instruments;Liu;J. Vib. Shock,2013

3. Study on the ground vibration and its impact on precision instruments induced by freight train;Zhang;J. Railw. Sci. Eng.,2013

4. The calculation of ancient wooden pillars horizontal velocity under the traffic load;Hu;J. Xi’an Univ. Archit. Technol. Nat. Sci. Ed.,2019

5. Jia, X.P. Study on Vibration Caused by Subway and Its Impact for Buildings. Master’s Thesis, 2008.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3