Predicting Change in Adaptation Strategies of Households to Geological Hazards in the Longmenshan Area, China Using Machine Learning and GIS

Author:

Su Haichuan,Fernandez Glenn,Hu Xiaoxi,Wu ShaolinORCID,Di BaofengORCID,Tan Chunping

Abstract

Hydrological changes combined with earthquakes easily trigger secondary disasters, including geological hazards. The secondary hazard of precipitation is the main disaster type in the Longmenshan Area (China). The 2008 Wenchuan earthquake caused more than 60,000 landslides, severely affecting rural households. This study aimed to answer two questions: (1) How did households adapt to the landslide-prone post-earthquake environment? (2) How will the households’ adaptation strategies change if landslide frequency changes? Different post-disaster adaptation strategies of households in Longmenshan Town, Sichuan, China were identified through a questionnaire survey and then clustered into groups based on similarity using a K-means algorithm. Afterward, a gradient boosting decision tree (GBDT) was used to predict change in adaptation strategies if there was a change in the frequency of landslides. The results show that there are three types of landslide adaptation strategies in the study area: (1) autonomous adaptation; (2) policy-dependent adaptation; and (3) hybrid adaptation, which is a mixture of the first two types. If the frequency of landslides is increased, then around 5% of households previously under the autonomous adaptation type would be converted to policy-dependent and hybrid adaptation types. If the frequency of landslides is reduced, then around 5% of households with policy-dependent adaptation strategies would be converted to the autonomous adaptation type. This exploratory study provides a glimpse of how machine learning can be utilized to predict how adaptation strategies would be modified if hazard frequency changed. A follow-up long-term study in Longmenshan Town is needed to confirm whether the predictions are indeed correct.

Funder

the Key Project of the Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3