Author:
Gou He,Luo Feng,Li Ruijie,Dong Xiaotian,Zhang Yifeng
Abstract
Waves are one of the most important factors affecting offshore marine engineering. Accurate calculation of wave distribution is an important prerequisite to ensure the safety of coastal engineering construction. Due to the influence of complex topography, hydrological conditions, and marine structures on the propagation of waves offshore, slowly varying topography, refraction, diffraction, reflection, shallowness, and other phenomena may occur. This article combines the MIKE21 Spetral Waves (SW) wave model and the MIKE21 Boussinesq Waves (BW) wave model which are developed by Danish Hydraulic Institute (DHI) for a joint application (SW–BW nested model). It simulates the hydrodynamic environment of the Yanwo Island scenic area, located in Zhoushan, in both large and small ranges. In addition, wave height distribution and berthing stability of different breakwater planning schemes are calculated to optimize the layout of the breakwater. Through the analysis of simulation results, it is concluded that the hydraulic performance of Scheme 2 (the broken line section on the west side is 100 m long, and that on the east is 1200 m long, and the breakwater is rotated 8 degrees counterclockwise along the axis on the basis of Scheme 1) is better than that of Scheme 1 (the broken line section on the west side is 100 m long, and that on the east is 1100 m long), which can provide a more reliable construction reference for the construction of the Yanwo Island scenic area.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference38 articles.
1. Developments of Near-shore Wave Numerical Models;Gu;J. Waterw. Harb.,2004
2. A Review of Coastal Wave Modelling;Huang;Adv. Mech.,2001
3. Study on Some Numerical Methods Calculating Waves in Shore;Feng;Mar. Forecast.,2003
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献