Glutamine Synthetase Contributes to the Regulation of Growth, Conidiation, Sclerotia Development, and Resistance to Oxidative Stress in the Fungus Aspergillus flavus

Author:

Wang Sen,Lin Ranxun,Tumukunde ElisabethORCID,Zeng Wanlin,Bao Qian,Wang Shihua,Wang Yu

Abstract

The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood. Here, we found that conditional disruption of glutamine synthetase (AflGsA) gene expression in Aspergillus flavus by using a xylose promoter leads to a complete glutamine deficiency. Supplementation of glutamine could restore the nutritional deficiency caused by AflGsA expression deficiency. Additionally, by using the xylose promoter for the downregulation of AflgsA expression, we found that AflGsA regulates spore and sclerotic development by regulating the transcriptional levels of sporulation genes abaA and brlA and the sclerotic generation genes nsdC and nsdD, respectively. In addition, AflGsA was found to maintain the balance of reactive oxygen species (ROS) and to aid in resisting oxidative stress. AflGsA is also involved in the regulation of light signals through the production of glutamine. The results also showed that the recombinant AflGsA had glutamine synthetase activity in vitro and required the assistance of metal ions. The inhibitor molecule L-α-aminoadipic acid suppressed the activity of rAflGsA in vitro and disrupted the morphogenesis of spores, sclerotia, and colonies in A. flavus. These results provide a mechanistic link between nutrition metabolism and glutamine synthetase in A. flavus and suggest a strategy for the prevention of fungal infection.

Funder

the Scientific Research Foundation of the Graduate School of Fujian Agriculture and Forestry University

the Science and Technology Innovation Fund of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference48 articles.

1. Aspergillus: Biology and industrial applications;Biotechnology,1992

2. Current taxonomic schemes of the genus Aspergillus and its teleomorphs;Biotechnology,1992

3. Aspergillus flavus;Annu. Rev. Phytopathol.,2011

4. Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance;Mycoses,2009

5. Pulmonary aspergillosis: A clinical review;Eur. Respir. Rev. Off. J. Eur. Respir. Soc.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3