Potential Biochemical Pesticide—Synthesis of Neofuranocoumarin and Inhibition the Proliferation of Spodoptera frugiperda Cells through Activating the Mitochondrial Pathway

Author:

Shao Xuehua,Zhang Zhuhong,Qian Xuhong,Wang Lanying,Zhang Yunfei,Luo YanpingORCID

Abstract

Furanocoumarins, the secondary metabolites of plants, are considered to be natural insecticides and fungicides because they prevent the invasion of plant pathogenic microorganisms and the predation of herbivorous insects. In this study, novel 2-arylfuranocoumarin derivatives were designed to synthesize by condensation, esterification, bromination, and Wittig reaction. The results showed an excellent photosensitive activity of 2-thiophenylfuranocoumarin (I34). Cell Counting Kit-8 detected that I34 could inhibit the proliferation of Spodoptera frugiperda (Sf9) cells in a time- and concentration-dependent manner under ultraviolet A (UV-A) light for 3 min. The inverted microscope revealed that cells treated with I34 swelled, the membrane was ruptured, and apoptotic bodies appeared. The flow cytometry detected that I34 could induce apoptosis of Sf9 cells, increase the level of intracellular reactive oxygen species (ROS), decrease the mitochondrial membrane potential, and block cell cycle arrest in the G2/M phase. Transmission electron microscopy detected cell mitochondrial cristae damage, matrix degradation, and mitochondrial vacuolation. Further enzyme activity detection revealed that the enzyme activities of apoptosis-related proteins caspase-3 and caspase-9 increased significantly (p < 0.05). Finally, Western blotting analysis detected that the phosphorylation level of Akt and Bad and the expression of the apoptosis inhibitor protein Bcl-XL were inhibited, cleaved-PARP and P53 were increased, and cytochrome C was released from the mitochondria into the cytoplasm. Moreover, under UV-A irradiation, I34 promoted the increase in ROS in Sf9 cells, activated the mitochondrial apoptotic signal transduction pathway, and finally, inhibited cell proliferation. Thus, novel furanocoumarins exhibit a potential application prospect as a biochemical pesticide.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3