Author:
Li Ya’nan,Wang Ren,Luo Xiaohu,Chen Zhengxing,Wang Li,Zhou Yunyu,Liu Weizhi,Cheng Miaomiao,Zhang Chen
Abstract
Edible oils, especially peanut oil, usually contain aflatoxin B1 (AFB1) at extremely high concentrations. This study focused on the synthesis of rice husk-based mesoporous silica (MCM-41) for the removal of AFB1 from peanut oil. MCM-41 was characterized by X-ray diffraction, N2 physisorption, and transmission electron microscope. MCM-41 was shown to have ordered channels with high specific surface area (1246 m2/g), pore volume (1.75 cm3/g), and pore diameter (3.11 nm). Under the optimal concentration of 1.0 mg/mL of the adsorbent dose, the adsorption behavior of MCM-41, natural montmorillonite (MONT), and commercial activated carbon (CA) for AFB1 were compared. The adsorption of AFB1 in peanut oil onto the three adsorbents was slower compared to that of AFB1 in an aqueous solution. In addition, the pseudo-second-order kinetic model better fit the adsorption kinetics of AFB1, while the adsorption mechanism followed the Langmuir adsorption isotherm on the three adsorbents. The calculated maximum adsorbed amounts of AFB1 on MONT, MCM-41, and CA were 199.41, 215.93, and 248.93 ng/mg, respectively. These results suggested that MCM-41 without modification could meet market demand and could be considered a good candidate for the removal of AFB1 from peanut oil. This study provides insights that could prove to be of economic and practical value.
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献