Bimodal Cell Size and Fusing Cells Observed in a Clonal Culture of the Ciguatoxin-Producing Benthic Dinoflagellate Gambierdiscus (WC1/1)

Author:

Holmes Michael J.,Lewis Richard J.ORCID

Abstract

Cells in a clonal culture of the WC1/1 strain of Gambierdiscus that produced ciguatoxin and maitotoxin-3 were observed to spontaneously fuse during the light phase of culture growth. Cells in the process of fusion were indistinguishable from other cells under the light microscope, except that at least one (often both) of the fusing cells displayed an extendible, finger-like protrusion (presumed peduncle) arising from near the sulcul region. Fusion started with one of the cells turning 90° to place the planes of the girdles approximately at right angles to each other, and movement of the transverse flagella ceased in both cells, or in the cell seen in girdle (lateral) view. The cell in girdle view appeared to fuse into the theca of the other cell. The cell that had turned 90° often rounded up and become egg shaped (obovoid) during early fusion. Fusion can be quick (<10 min) or can take more than an hour. We saw no evidence of the theca being shed during fusion. Measurement of the dorsoventral and transdiameters revealed a wide range for cell sizes that were distributed as a bimodal population in the clonal culture. This bimodal cell population structure was maintained in clonal cultures reisolated from a small or large cell from the original WC1/1 culture. Cellular production of ciguatoxins by the WC1/1 clone increased during the first two years in culture with a corresponding decrease in production of maitotoxin-3, but this inverse relationship was not maintained over the following ~1.5 years.

Funder

Australian Fishing Industry and Research Council to Noel Gillespie and Richard Lewis

National University of Singapore

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3