Histopathological Changes in the Liver, Heart and Kidneys Following Malayan Pit Viper (Calloselasma rhodostoma) Envenoming and the Neutralising Effects of Hemato Polyvalent Snake Antivenom

Author:

Khimmaktong Wipapan,Nuanyaem Nazmi,Lorthong Nissara,Hodgson Wayne C.ORCID,Chaisakul Janeyuth

Abstract

Calloselasma rhodostoma (Malayan pit viper) is a medically important snake species that is widely distributed across Southeast Asia. Systemic coagulopathy causing severe haemorrhage and local tissue injury is commonly observed following C. rhodostoma envenoming. However, nephrotoxicity and congestive heart failure were previously reported in a patient who had a long length of hospital stay. In this study, we determined the effect of C. rhodostoma envenoming on cardiovascular disturbances and the associated morphological changes in the liver, heart and kidneys using animal models. We also evaluated the efficacy of Hemato polyvalent antivenom (HPAV; Queen Saovabha Memorial Institute (QSMI) of the Thai Red Cross Society, Thailand) in neutralising the histopathological effects of C. rhodostoma venom. The intravenous (i.v.) administration of C. rhodostoma venom (1000 µg/kg) caused a rapid decrease in mean arterial pressure (MAP) followed by complete cardiac collapse in anaesthetized rats. Moreover, the intraperitoneal (i.p.) administration of C. rhodostoma venom (11.1 mg/kg; 3 × LD50) for 24 h caused cellular lesions in the liver and heart tissues. C. rhodostoma venom also induced nephrotoxicity, as indicated by the presence of tubular injury, interstitial vascular congestion and inflammatory infiltration in the whole area of the kidney. The administration of HPAV, at manufacturer-recommended doses, 15 min prior to or after the addition of C. rhodostoma venom reduced the extent of the morphological changes in the liver, heart and kidneys. This study found that experimental C. rhodostoma envenoming induced cardiovascular disturbances, hepatotoxicity and nephrotoxicity. We also highlighted the potential broad utility of HPAV to neutralise the histopathological effects of C. rhodostoma venom. The early delivery of antivenom appears capable of preventing envenoming outcomes.

Funder

the Office of Research Development, Phramongkutklao College of Medicine & Phramongkutklao Hospital

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference37 articles.

1. Vulnerability to snakebite envenoming: a global mapping of hotspots

2. Correction: Snakebite envenoming

3. Venomous snakes of the South-East Asia Region, their venoms and pathophysiology of human envenoming,2016

4. Snakebite and Envenomation Management in Malaysia;Ismail,2015

5. Venomics of Calloselasma rhodostoma , the Malayan pit viper: A complex toxin arsenal unraveled

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3