Okadaic Acid Depuration from the Cockle Cerastoderma edule

Author:

Blanco JuanORCID,Martín Helena,Mariño Carmen,Rossignoli Araceli E.ORCID

Abstract

The cockle Cerastoderma edule is a commercially important species in many European Countries. It can accumulate okadaic acid (OA) and other toxins in its group, which makes it unsuitable for human consumption, producing harvesting bans to avoid intoxications. The duration of those bans depends in part on the depuration kinetics of the toxin in this species. In this work, this kinetics was studied by means of fitting different models to depuration data experimentally obtained, using naturally contaminated cockles. Cockles depurated OA faster than most other bivalve species studied. Models that include Michaelis-Menten kinetics describe the depuration better than those using a first order exponential decrease to describe the first (or the only) compartment. One-compartment models were not able to describe the final part of the depuration curve, in which OA was depurated very slowly. Therefore, two-compartment models were needed. Esters were depurated at a much faster rate than the free form of the toxin; however, no significant esterification was detected during the process. The slow depuration rate suggests that other bivalve species could be used as sentinels to monitor cockle populations, but caution should be taken when toxin concentrations are very high.

Funder

Xunta de Galicia

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3