Abstract
Bees originally developed their stinging apparatus and venom against members of their own species from other hives or against predatory insects. Nevertheless, the biological and biochemical response of arthropods to bee venom is not well studied. Thus, in this study, the physiological responses of a model insect species (American cockroach, Periplaneta americana) to honeybee venom were investigated. Bee venom toxins elicited severe stress (LD50 = 1.063 uL venom) resulting in a significant increase in adipokinetic hormones (AKHs) in the cockroach central nervous system and haemolymph. Venom treatment induced a large destruction of muscle cell ultrastructure, especially myofibrils and sarcomeres. Interestingly, co-application of venom with cockroach Peram-CAH-II AKH eliminated this effect. Envenomation modulated the levels of carbohydrates, lipids, and proteins in the haemolymph and the activity of digestive amylases, lipases, and proteases in the midgut. Bee venom significantly reduced vitellogenin levels in females. Dopamine and glutathione (GSH and GSSG) insignificantly increased after venom treatment. However, dopamine levels significantly increased after Peram-CAH-II application and after co-application with bee venom, while GSH and GSSG levels immediately increased after co-application. The results suggest a general reaction of the cockroach body to bee venom and at least a partial involvement of AKHs.
Funder
Central European Institute of Technology
Institute of Entomology, Biology Centre, Ceske Budejovoce, Czech Republic
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献