Development and Characterization of Anti-Naja ashei Three-Finger Toxins (3FTxs)-Specific Monoclonal Antibodies and Evaluation of Their In Vitro Inhibition Activity

Author:

Manson Ernest Z.ORCID,Kyama Mutinda C.,Kimani Josephine,Bocian AleksandraORCID,Hus Konrad K.ORCID,Petrilla Vladimír,Legáth Jaroslav,Kimotho James H.

Abstract

Antivenom immunotherapy is the mainstay of treatment for snakebite envenoming. Most parts of the world affected by snakebite envenoming depend on broad-spectrum polyspecific antivenoms that are known to contain a low content of case-specific efficacious immunoglobulins. Thus, advances in toxin-specific antibodies production hold much promise in future therapeutic strategies of snakebite envenoming. We report anti-3FTxs monoclonal antibodies developed against N. ashei venom in mice. All the three test mAbs (P4G6a, P6D9a, and P6D9b) were found to be IgG antibodies, isotyped as IgG1. SDS-PAGE analysis of the test mAbs showed two major bands at approximately 55 and 29 kDa, suggestive of immunoglobulin heavy and light chain composition, respectively. The immunoaffinity-purified test mAbs demonstrated higher binding efficacy to the target antigen compared to negative control. Similarly, a cocktail of the test mAbs was found to induce a significantly higher inhibition (p-value < 0.0001) compared to two leading commercial brands of antivenoms on the Kenyan market, implying a higher specificity for the target antigen. Both the test mAbs and 3FTxs polyclonal antibodies induced comparable inhibition (p-value = 0.9029). The inhibition induced by the 3FTxs polyclonal antibodies was significantly different from the two antivenoms (p-value < 0.0001). Our results demonstrate the prospects of developing toxin-specific monoclonal-based antivenoms for snakebite immunotherapy.

Funder

African Union Commission

Africa-Ai-Japan/JICA

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3