Dynamic Changes in Vegetation Ecological Quality in the Tarim Basin and Its Response to Extreme Climate during 2000–2022

Author:

Zhang Yuanmei12,Lu Yan34,Sun Guili12,Li Li34,Zhang Zhihao34ORCID,Zhou Xiaoguo5

Affiliation:

1. College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China

2. Key Laboratory of Forestry Ecology and Industrial Technology in Arid Areas, Xinjiang Agricultural University, Urumqi 830052, China

3. Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

4. Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele 848300, China

5. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

The Tarim Basin is located in an arid inland area; the ecological environment is fragile, and it is extremely sensitive to climate change. For the purpose of studying dynamic changes in the vegetation response of vegetation in the Tarim Basin to extreme climate, this study used the Vegetation Ecological Quality Index (EQI) as a vegetation indicator and calculated 12 extreme climate indices using Rclimdex. Pearson correlation analysis was used to explore the relationship between EQI values and various extreme climate indices at both inter-annual and intra-annual scales. Additionally, geographic detector analysis was employed to examine the single and interactive effects of extreme climate on the EQI for different vegetation types. The following was found: (1) During 2000–2022, the EQI showed an upward trend in the Tarim Basin, and the increase in agricultural vegetation was the fastest. (2) Since 2000, the extreme warm temperature indices have risen, whereas the extreme cold temperature indices have declined. The warming rate of nighttime temperatures exceeds that of daytime, and the extreme precipitation rises intensively. Simultaneously, continuous dry days have also increased. (3) On an inter-annual scale, the EQI is primarily negatively correlated with the most extreme warm temperature indices, while it is positively correlated with extreme cold temperatures and extreme precipitation indices. On an intra-annual scale, there is an obvious regional concentration in the correlation between the EQI and extreme climate indices. The diurnal temperature range (DTR) and cold daytimes (TX10P) have inhibitory and promoting effects on areas with high and low EQI, respectively. The extremum indices, temperature warm indices, and precipitation intensity indices have a promoting effect on areas with a high EQI and an inhibiting effect on areas with a low EQI. The interaction between extreme climate indices has a greater impact on the EQI than the effect of a single extreme climate index, especially with a significant impact on forests and shrubs. This study provides a reference for the early warning of meteorological disasters, ecosystem protection, and sustainable management in the Tarim Basin.

Funder

The Third Xinjiang Scientific Expedition

Key scientific and technological research projects in the Xinjiang Production and Construction Corps

West Light Foundation for Young Scholars of the Chinese Academy of Sciences

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3