Author:
Pariwat Thongpan,Seresangtakul Pusadee
Abstract
Sign language is a type of language for the hearing impaired that people in the general public commonly do not understand. A sign language recognition system, therefore, represents an intermediary between the two sides. As a communication tool, a multi-stroke Thai finger-spelling sign language (TFSL) recognition system featuring deep learning was developed in this study. This research uses a vision-based technique on a complex background with semantic segmentation performed with dilated convolution for hand segmentation, hand strokes separated using optical flow, and learning feature and classification done with convolution neural network (CNN). We then compared the five CNN structures that define the formats. The first format was used to set the number of filters to 64 and the size of the filter to 3 × 3 with 7 layers; the second format used 128 filters, each filter 3 × 3 in size with 7 layers; the third format used the number of filters in ascending order with 7 layers, all of which had an equal 3 × 3 filter size; the fourth format determined the number of filters in ascending order and the size of the filter based on a small size with 7 layers; the final format was a structure based on AlexNet. As a result, the average accuracy was 88.83%, 87.97%, 89.91%, 90.43%, and 92.03%, respectively. We implemented the CNN structure based on AlexNet to create models for multi-stroke TFSL recognition systems. The experiment was performed using an isolated video of 42 Thai alphabets, which are divided into three categories consisting of one stroke, two strokes, and three strokes. The results presented an 88.00% average accuracy for one stroke, 85.42% for two strokes, and 75.00% for three strokes.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献