A Dimensionality Reduction Algorithm for Unstructured Campus Big Data Fusion

Author:

Wang Zhenfei,Wang Yan,Zhang Liying,Zhang Chuchu,Zhang Xingjin

Abstract

Data modeling and dimensionality reduction are important research points in the field of big data. At present, there is no effective model to realize the consistent representation and fusion of different types of data of students in unstructured campus big data. In addition, in the process of big data processing, the amount of data is too large and the intermediate results are too complex, which seriously affects the efficiency of big data dimension reduction. To solve the above problems, this paper proposes an incremental high order singular value decomposition dimensionality (icHOSVD) reduction algorithm for unstructured campus big data. In this algorithm, the characteristics of audio, video, image and text data in unstructured campus student data are tensioned to form a sub-tensor model, and the semi-tensor product is used to fuse the sub-tensor model into a unified model as the individual student tensor model. On the basis of individual model fusion, the campus big data fusion model was segmented, and each segmented small tensor model was dimensioned by icHOSVD reduction to obtain an approximate tensor as the symmetric tensor that could replace the original tensor, so as to solve the problem of large volume of tensor fusion model and repeated calculation of intermediate results in data processing. The experimental results show that the proposed algorithm can effectively reduce the computational complexity and improve the performance compared with traditional data dimension reduction algorithms. The research results can be applied to campus big data analysis and decision-making.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3