“Double-Twist”-Based Dynamic Induction of Optical Activity in Multichromophoric System

Author:

Mądry TomaszORCID,Czapik AgnieszkaORCID,Kwit MarcinORCID

Abstract

The electronic circular dichroism (CD)-silent 2,5-bis(biphen-2-yl)terephthalaldehyde has been used as a sensor (reporter) of chirality for primary amines. The through-space inductor–reporter interactions force a change in the chromophore conformation toward one of the diastereomeric forms. The structure of the reporter, with the terminal flipping biphenyl groups, led to generating Cotton effects in both lower- and higher-energy regions of the ECD spectrum. The induction of an optical activity in the chromophore was due to the cascade point-to-axial chirality transmission mechanism. The reporter system turned out to be sensitive to the subtle differences in the inductor structure. Despite the size of the chiral substituent, the molecular structure of the inductor–reporter systems in the solid-state showed many similarities. The most important one was the tendency of the core part of the molecules to adapt pseudocentrosymmetric conformation. Supported by a weak dispersion and Van der Waals interactions, the face-to-face and edge-to-face interactions between the π-electron systems present in the molecule were found to be responsible for the molecular arrangement in the crystal.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Biochemistry;Berg,2010

2. Supramolecular Chemistry;Steed,2009

3. Organic Stereochemistry. Guiding Principles and Biomedical Relevance,2014

4. Stereochemistry of Organic Compounds;Eliel,1994

5. The relevance of chirality to the study of biological activity

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3