Abstract
The ageing population’s problems directly impact countries’ socio-economic structure, as more resources are required to monitor the aged population’s health. The growth in human life expectancy is increasing due to medical technologies and nutritional science innovations. The Internet of Things (IoT) is the connectivity of physical objects called things to the Internet. IoT has a wide range of health monitoring applications based on biomedical sensing devices to monitor health conditions. This paper proposes elderly patients’ health monitoring architecture based on an intelligent task mapping approach for a closed-loop IoT healthcare environment. As a case study, a health monitoring system was developed based on the proposed architecture for elderly patients’ health monitoring in the home, ambulance, and hospital environment. The system detects and notifies deteriorating conditions to the authorities based on biomedical sensors for faster interventions. Wearable biomedical sensors are used for monitoring body temperature, heart rate, blood glucose level, and patient body position. Threshold and machine learning-based approaches were used to detect anomalies in the health sensing data. The proposed architecture’s performance analysis is evaluated in terms of round trip time, reliability, task drop rate, and latency performance metrics. Performance results show that the proposed architecture of the elderly patient health monitoring can provide reliable solutions for critical tasks in IoT environments.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献