Dual Crisscross Attention Module for Road Extraction from Remote Sensing Images

Author:

Chen Chuan,Zhao Huilin,Cui Wei,He Xin

Abstract

Traditional pixel-based semantic segmentation methods for road extraction take each pixel as the recognition unit. Therefore, they are constrained by the restricted receptive field, in which pixels do not receive global road information. These phenomena greatly affect the accuracy of road extraction. To improve the limited receptive field, a non-local neural network is generated to let each pixel receive global information. However, its spatial complexity is enormous, and this method will lead to considerable information redundancy in road extraction. To optimize the spatial complexity, the Crisscross Network (CCNet), with a crisscross shaped attention area, is applied. The key aspect of CCNet is the Crisscross Attention (CCA) module. Compared with non-local neural networks, CCNet can let each pixel only perceive the correlation information from horizontal and vertical directions. However, when using CCNet in road extraction of remote sensing (RS) images, the directionality of its attention area is insufficient, which is restricted to the horizontal and vertical direction. Due to the recurrent mechanism, the similarity of some pixel pairs in oblique directions cannot be calculated correctly and will be intensely dilated. To address the above problems, we propose a special attention module called the Dual Crisscross Attention (DCCA) module for road extraction, which consists of the CCA module, Rotated Crisscross Attention (RCCA) module and Self-adaptive Attention Fusion (SAF) module. The DCCA module is embedded into the Dual Crisscross Network (DCNet). In the CCA module and RCCA module, the similarities of pixel pairs are represented by an energy map. In order to remove the influence from the heterogeneous part, a heterogeneous filter function (HFF) is used to filter the energy map. Then the SAF module can distribute the weights of the CCA module and RCCA module according to the actual road shape. The DCCA module output is the fusion of the CCA module and RCCA module with the help of the SAF module, which can let pixels perceive local information and eight-direction non-local information. The geometric information of roads improves the accuracy of road extraction. The experimental results show that DCNet with the DCCA module improves the road IOU by 4.66% compared to CCNet with a single CCA module and 3.47% compared to CCNet with a single RCCA module.

Funder

National Key R & D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Topological Space Knowledge Distillation for Compact Road Extraction in Optical Remote Sensing Images

2. An road extraction method for remote sensing image based on Encoder-Decoder network;He;Acta Geod. Cartogr. Sin.,2019

3. Understanding the effective receptive field in deep convolutional neural networks;Luo;arXiv,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3